Optical Properties of Solids

Claudia Ambrosch-Draxl Chair of Atomistic Modelling and Design of Materials University Leoben, Austria

B

Outline

light scattering dielectric tensor in the RPA sumrules symmetry the band gap problem

Program

Basics

program flow inputs outputs

convergence

results

Examples

Outlook

applications beyond linear optics beyond RPA

Outline

light scattering dielectric tensor in the RPA sumrules symmetry the band gap problem

Program

Basics

program flow inputs outputs

convergence

results

Examples

Outlook

applications beyond linear optics beyond RPA

Properties & Applications

Dielectric function Optical absorption Optical gap Exciton binding energy **Photoemission spectra** Core level spectra Raman scattering Compton scattering Positron annihilation NMR spectra **Electron spectroscopy**

Light emitting diodes Lasers Solar cells Displays Computer screens Smart windows Light bulbs CDs & DVDs

understand physics characterize materials tailor special properties

Light - Matter Interaction

Response to external electric field *E*

Polarizability:
$$P_{\alpha} = \sum_{\beta} \underline{\chi_{\alpha\beta}} E_{\beta} + \sum_{\beta\gamma} \chi_{\alpha\beta\gamma} E_{\beta} E_{\gamma} + \dots$$

Linear approximation: $\mathbf{P} = \chi \mathbf{E}$ susceptibility χ
 $\mathbf{J} = \sigma \mathbf{E}$ conductivity σ
 $\mathbf{D} = \epsilon \mathbf{E}$ dielectric tensor ϵ

$$D_{\alpha}(\mathbf{r},t) = \sum_{\beta} \int_{\mathbf{r}'} \int_{t'} \epsilon_{\alpha\beta}(\mathbf{r},\mathbf{r}',t-t') E_{\beta}(\mathbf{r}',t')$$

Fourier transform:

$$D_{\alpha}(\mathbf{q} + \mathbf{G}, \omega) = \sum_{\beta} \sum_{\mathbf{G}'} \frac{\epsilon_{\alpha\beta}(\mathbf{q} + \mathbf{G}, \mathbf{q} + \mathbf{G}', \omega)}{\mathbf{G}_{\beta}(\mathbf{q} + \mathbf{G}', \omega)} E_{\beta}(\mathbf{q} + \mathbf{G}', \omega)$$

The Dielectric Tensor

Free electrons: Lindhard formula

$$\epsilon(\mathbf{q},\omega) = 1 - \lim_{\eta \to 0} \frac{4\pi e^2}{|\mathbf{q}|^2 \Omega_c} \sum_{\mathbf{k}} \frac{f(\varepsilon_{\mathbf{k}+\mathbf{q}}) - f(\varepsilon_{\mathbf{k}})}{\varepsilon_{\mathbf{k}+\mathbf{q}} - \varepsilon_{\mathbf{k}} - \omega - i\eta}$$

Bloch electrons:

$$\begin{split} \epsilon(\mathbf{q},\omega) &= 1 - \lim_{\eta \to 0} \frac{4\pi e^2}{|\mathbf{q}|^2 \Omega_c} \sum_{\mathbf{k},l,l'} \frac{|\mathbf{k} + \mathbf{q},l'|\mathbf{k},l|^2}{\varepsilon_{\mathbf{k}+\mathbf{q}} - \varepsilon_{\mathbf{k}} - \omega - i\eta} \\ \lim_{q \to 0} ||\mathbf{k} + \mathbf{q},l'|\mathbf{k},l|^2 &= \delta_{l'l} + (1 - \delta_{l'l}) \frac{q^2}{m^2 \omega_{l'l}^2} |P_{l',l}|^2 \\ & \text{intraband} & \text{interband} \\ \end{split}$$

$$Im\epsilon_{\alpha\beta}(\omega) = \frac{4\pi e^2}{m^2 \omega^2} \sum_{l,l'} \int d\mathbf{k} \langle l' | p^{\alpha} | l \rangle_{\mathbf{k}} \langle l | p^{\beta} | l' \rangle_{\mathbf{k}} (f(\varepsilon_l) - f(\varepsilon_{l'})) \, \delta(\varepsilon_{l'} - \varepsilon_l - \omega)$$

independent particle approximation, random phase approximation (RPA)

Optical "Constants"

Complex dielectric tensor:

Kramers-Kronig relations

$$\begin{split} \mathrm{Im}\epsilon_{\alpha\beta}(\omega) &= \frac{4\pi e^2}{m^2\omega^2} \sum_{c,v} \int d\mathbf{k} \, \langle c_{\mathbf{k}} | p^{\alpha} | v_{\mathbf{k}} \rangle \langle v_{\mathbf{k}} | p^{\beta} | c_{\mathbf{k}} \rangle \, \delta(\varepsilon_{c_{\mathbf{k}}} - \varepsilon_{v_{\mathbf{k}}} - \omega) \\ \mathrm{Re}\epsilon_{\alpha\beta}(\omega) &= \delta_{\alpha\beta} + \frac{2}{\pi} \mathrm{P} \int_{0}^{\infty} \frac{\omega' \, \mathrm{Im} \, \epsilon_{\alpha\beta}(\omega')}{\omega'^2 - \omega^2} d\omega' \end{split}$$

Optical conductivity:

$$\operatorname{Re}\sigma_{\alpha\beta}(\omega) = rac{\omega}{4\pi} \operatorname{Im}\epsilon_{\alpha\beta}(\omega)$$

Complex refractive index:

$$n_{\alpha\alpha}(\omega) = \sqrt{\frac{|\epsilon_{\alpha\alpha}(\omega)| + \operatorname{Re}\epsilon_{\alpha\alpha}(\omega)|}{2}}$$
 $k_{\alpha\alpha}(\omega) = \sqrt{\frac{|\epsilon_{\alpha\alpha}(\omega)| - \operatorname{Re}\epsilon_{\alpha\alpha}(\omega)|}{2}}$ Reflectivity: $R_{\alpha\alpha}(\omega) = \sqrt{\frac{|\epsilon_{\alpha\alpha}(\omega)| - \operatorname{Re}\epsilon_{\alpha\alpha}(\omega)|}{2}}$ Absorption coefficient: $R_{\alpha\alpha}(\omega) = \frac{(n_{\alpha\alpha} - 1)^2 + k_{\alpha\alpha}^2}{(n_{\alpha\alpha} + 1)^2 + k_{\alpha\alpha}^2}$ Loss function: $L_{\alpha\alpha}(\omega) = -\operatorname{Im}\left(\frac{1}{\epsilon_{\alpha\alpha}(\omega)}\right)$

Intraband Contributions

Dielectric Tensor:

Drude-like terms

Metals

$$\begin{split} &\operatorname{Im} \epsilon_{\alpha\beta}(\omega) = \frac{4\pi N e^2}{m} \frac{\Gamma}{\omega(\omega^2 + \Gamma^2)} = \frac{\Gamma \omega_{p,\alpha\beta}^2}{\omega(\omega^2 + \Gamma^2)} \\ &\operatorname{Re} \epsilon_{\alpha\beta}(\omega) = 1 - \frac{\omega_{p,\alpha\beta}^2}{(\omega^2 + \Gamma^2)} \end{split}$$

Optical conductivity:

$$\operatorname{Re} \sigma_{\alpha\beta}(\omega) = \frac{\omega}{4\pi} \operatorname{Im} \epsilon_{\alpha\beta}(\omega) = \frac{\omega_{p,\alpha\beta}^2}{4\pi} \frac{\Gamma}{\omega^2 + \Gamma^2}$$

Plasma frequency:

$$\omega_{p,\alpha\beta}^2 = \frac{4\pi e^2}{\Omega^2} \left(\frac{n}{m}\right)_{\alpha\beta} = \frac{e^2}{m^2 \pi^2} \sum_l \int d\mathbf{k} \; \langle l | p^\alpha | l \rangle_{\mathbf{k}} \langle l | p^\beta | l \rangle_{\mathbf{k}} \; \delta(\varepsilon_l - \varepsilon_F)$$

Sumrules

$$\int_{0}^{\omega} \sigma\left(\omega'\right) \omega' d\omega' = N_{eff}\left(\omega\right)$$

$$-\int_{0}^{\omega} Im\left(\frac{1}{\varepsilon\left(\omega'\right)}\right)\omega'd\omega' = N_{eff}\left(\omega\right)$$

$$-\int_{0}^{\infty} Im\left(\frac{1}{\varepsilon\left(\omega'\right)}\right)\frac{1}{\omega'} \, d\omega' = \frac{\pi}{2}$$

Symmetry

triclinic

 $\begin{pmatrix}
\operatorname{Im} \epsilon_{XX} & \operatorname{Im} \epsilon_{XY} & \operatorname{Im} \epsilon_{XZ} \\
\operatorname{Im} \epsilon_{XY} & \operatorname{Im} \epsilon_{YY} & \operatorname{Im} \epsilon_{YZ} \\
\operatorname{Im} \epsilon_{XZ} & \operatorname{Im} \epsilon_{YZ} & \operatorname{Im} \epsilon_{ZZ}
\end{pmatrix}$

monoclinic (α , β =90°)

orthorhombic

 $\begin{pmatrix} \operatorname{Im} \epsilon_{xx} & \operatorname{Im} \epsilon_{xy} & 0 \\ \operatorname{Im} \epsilon_{xy} & \operatorname{Im} \epsilon_{yy} & 0 \\ 0 & 0 & \operatorname{Im} \epsilon_{zz} \end{pmatrix}$

tetragonal, hexagonal

$$\begin{pmatrix} \operatorname{Im} \epsilon_{XX} & 0 & 0 \\ 0 & \operatorname{Im} \epsilon_{XX} & 0 \\ 0 & 0 & \operatorname{Im} \epsilon_{ZZ} \end{pmatrix}$$

 $\begin{pmatrix} \operatorname{Im} \epsilon_{XX} & 0 & 0 \\ 0 & \operatorname{Im} \epsilon_{YY} & 0 \\ 0 & 0 & \operatorname{Im} \epsilon_{ZZ} \end{pmatrix}$

cubic

 $\begin{pmatrix} \operatorname{Im} \epsilon_{XX} & 0 & 0 \\ 0 & \operatorname{Im} \epsilon_{XX} & 0 \\ 0 & 0 & \operatorname{Im} \epsilon_{XX} \end{pmatrix}$

Magneto-optics

without magnetic field, spin-orbit coupling:

with magnetic field H II z, spin-orbit coupling: tetragonal

Example: Ni

cubic

Be careful

Wavefunction vs. Density

Hartree-Fock:

 ε_i ionization energies $\varepsilon_i = E(n_1, n_2, \dots, n_i, \dots, n_N) - E(n_1, n_2, \dots, n_{i-1}, \dots, n_N)$ Koopman's theorem DFT:

$$\varepsilon_i$$
 Lagrange parameters
 $\varepsilon_i(n_1, n_2, \dots, n_i, \dots, n_N) = \frac{dE}{dn_i}$ Janak's theorem
 $\psi_i(\mathbf{r})$ auxiliary functions $\rho(\mathbf{r}) = \sum_i f_i |\psi_i(\mathbf{r})|^2$

Open Questions

Approximations used:

Ground state:

 $V_{xc}(\mathbf{r}) = \frac{dE_{xc}(\rho(\mathbf{r}))}{d\rho(\mathbf{r})}$ Local Density Approximation (LDA) Generalized Gradient Approximation (GGA)

Excited state:

Interpretation within one-particle picture Interpretation of excited states in terms of ground state properties Electron-hole interaction ignored (RPA)

Where do possible errors come from? How to treat excited states ab initio?

The Band Gap Problem

lonization energy $\varepsilon_N(N) = -I$

Electro-affinity $\varepsilon_{N+1}(N+1) = -A$

Band gap

$$E_g = I - A = \varepsilon_{N+1}(N+1) - \varepsilon_N(N)$$

$$E_g = \underbrace{\varepsilon_{N+1}(N) - \varepsilon_N(N)}_{\varepsilon_g} + \underbrace{\varepsilon_{N+1}(N+1) - \varepsilon_{N+1}(N)}_{\Delta_{xc}}$$

$$E_g = \varepsilon_g + \Delta_{xc}$$

shift of conduction bands: scissors operator many-body perturbation theory: GW approach

Outline

Basics	light scattering dielectric tensor in the RPA sumrules symmetry the band gap problem
Program	program flow inputs outputs
Examples	convergence results
Outlook	applications beyond linear optics beyond RPA

Program Flow

"optic"

al.inop

2000 1	number of k-points, first k-point
-5.0 2.2	E _{min} , E _{max} : energy window for matrix elements
1	number of cases (see choices below)
1	Re <x><x></x></x>
OFF	unsymmetrized matrix elements written to file?

ni.inop (magneto-optics)

800 1 -5.0 5.0	 number of k-points, first k-point Emin, Emax: energy window for matrix elem 	ents
3 1 3 7 OFF	number of cases (see choices below) Re <x><x> Re <z><z> Im <x><y></y></x></z></z></x></x>	Choices: 1Re <x><x> 2Re <y><y> 3Re <z><z> 4Re <x><y></y></x></z></z></y></y></x></x>
		5Re <x><z> 6Re <y><z> 7Im <x><y> 8Im <x><z> 9Im <y><z></z></y></z></x></y></x></z></y></z></x>

Inputs

"joint"

al.injoint

1 18	lower and upper band index
0.000 0.001 1.000	E _{min} , dE, Emax [Ry]
eV	output units eV / Ry
4	switch
1	number of columns to be considered
0.1 0.2	broadening for Drude model
	choose gamma for each case!

SWITCH	
0JOINT DOS for each band combination 1JOINT DOS sum over all band combinations	
2DOS for each band	
3DOS sum over all bands 4Im(EPSILON) total	
5Im(EPSILON) for each band combination	
6INTRABAND contributions	cic

Inputs

"kram"

al.inkram

- 0.1 broadening gamma
- **0.0** energy shift (scissors operator)
- **1** add intraband contributions 1/0
- 12.6 plasma frequency
- **0.2** gamma(s) for intraband part

as number of colums as number of colums

si.inkram

0

0.05 broadening gamma1.00 energy shift (scissors operator)

Inputs

optic

case.symmat case.mommat momentum matrix elements, symmetrized analysis, NLO

case.joint

joint Imε SWITCH 4

kram

case.epsilon case.sigmak case.refraction case.absorp case.eloss complex dielectric tensor
optical conductivity
refractive index
absorption coefficient
loss function

Outline

Basics	light scattering dielectric tensor in the RPA sumrules symmetry the band gap problem
Program	program flow inputs outputs
Examples	convergence results
Outlook	applications beyond linear optics beyond RPA

Results

Theory - Experiment

K. Glantschnig, and C. Ambrosch-Draxl, (preprint).

C. Ambrosch-Draxl and J. O. Sofo Comp. Phys. Commun., in print