Magnetism and SOC in Wien2k

Robert Laskowski

rolask@theochem.tuwien.ac.ar

Vienna University of Technology, Institute of Materials Chemistry

SCOPE

- magnetism in Wien2k
 - collinear spins (ferro, ferri, antiferro-magnets)
 - non-collinear spin (any arrangements), introduction to WienNCM
- spin-orbit coupling (SOC) in Wien2k

Pauli Hamiltonian

 $H_{P} = -\frac{\hbar}{2\mathrm{m}} \nabla^{2} + V_{ef} + \mu_{B} \vec{\sigma} \cdot \vec{B}_{ef} + \zeta (\vec{\sigma} \cdot \vec{l}) \dots$

- 2x2 matrix in spin space, due to Pauli spin operators
- wave function is a 2-component vector (spinor)

spin up component

 $H_{P} \begin{pmatrix} \psi_{1} \\ \psi_{2} \end{pmatrix} = \varepsilon \begin{pmatrix} \psi_{1} \\ \psi_{2} \end{pmatrix}$ spin down component

Pauli Hamiltonian

Exchange and correlation

from DFT LDA exchange-correlation energy:

$$E_{xc}(n,\vec{m}) = \int n \epsilon_{xc}(n,\vec{m}) dr^3$$

local function of n and m

definition of V_{cx} and B_{xc}:

$$V_{xc} = \frac{\partial E_{xc}(n, \vec{m})}{\partial n} \qquad \vec{B}_{xc} = \frac{\partial E_{xc}(n, \vec{m})}{\partial \vec{m}}$$

functional derivatives

• LDA expression for V_{cx} and B_{xc} :

B_{xc} and m are parallel

$$V_{xc} = \epsilon_{xc}(n, \vec{m}) + n \frac{\partial \epsilon_{xc}(n, \vec{m})}{\partial n}$$

 $\vec{B}_{xc} = n \frac{\partial \epsilon_{xc}(n, \vec{m})}{\partial m} \hat{m}$

Non-collinear case

$$H_{P} = -\frac{\hbar}{2m} \nabla^{2} + V_{ef} + \mu_{B} \vec{\sigma} \cdot \vec{B}_{ef} + \zeta \left(\vec{\sigma} \cdot \vec{l} \right) \dots$$

- direction of magnetization vary in space
- spin-orbit coupling is present

$$-\frac{\hbar}{2m}\nabla^2 + V_{ef} + \mu_B B_z + \dots \qquad \mu_B \left(B_x - i B_y \right)$$
$$\mu_B \left(B_x + i B_y \right) \qquad -\frac{\hbar}{2m}\nabla^2 + V_{ef} + \mu_B B_z + \dots$$
$$\psi = \varepsilon \psi$$

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \quad \psi_{1,} \psi_2 \neq 0$$

- solutions are non-pure spinors
- non-collinear magnetic moments

Collinear case

$$H_{P} = -\frac{\hbar}{2m} \nabla^{2} + V_{ef} + \mu_{B} \vec{\sigma} \cdot \vec{B}_{ef} + \zeta (\vec{\sigma} \cdot \vec{L}) \dots$$

- magnetization in Z direction, B_x and B_y=0
- spin-orbit coupling is not present

$$\begin{pmatrix} -\frac{\hbar}{2m} \nabla^2 + V_{ef} + \mu_B B_z + \dots & 0 \\ 0 & -\frac{\hbar}{2m} \nabla^2 + V_{ef} + \mu_B B_z + \dots \end{pmatrix} \psi = \varepsilon \psi$$
$$\psi_{\uparrow} = \begin{pmatrix} \psi_1 \\ 0 \end{pmatrix}, \ \psi_{\downarrow} = \begin{pmatrix} 0 \\ \psi_2 \end{pmatrix}, \ \varepsilon_{\uparrow} \neq \varepsilon_{\downarrow} \quad \text{solutions are pure spinors} \\ \bullet \text{ collinear magnetic moments} \end{cases}$$

Non-magnetic case

$$H_{P} = -\frac{\hbar}{2m} \nabla^{2} + V_{ef} + \mu_{B} \vec{o} \cdot \vec{B}_{ef} + \zeta (\vec{o} \cdot \vec{l}) \dots$$

- no magnetization present, B_x, B_y and B_z=0
- spin-orbit coupling is not present

$$\begin{vmatrix} -\frac{\hbar}{2m} \nabla^2 + V_{ef} + \dots & 0 \\ 0 & -\frac{\hbar}{2m} \nabla^2 + V_{ef} + \dots \end{vmatrix} \psi = \varepsilon \psi$$

$$\psi_{\uparrow} = \begin{pmatrix} \psi \\ 0 \end{pmatrix}, \ \psi_{\downarrow} = \begin{pmatrix} 0 \\ \psi \end{pmatrix}, \ \varepsilon_{\uparrow} = \varepsilon_{\downarrow}$$

- solutions are pure spinors
- degenerate spin solutions

Magnetism and Wien2k

Wien2k can only handle collinear or non-magnetic cases

Magnetism and Wien2k

- L E N 2k
- Wien2k can only handle collinear or non-magnetic cases

Spin polarized calculations

- runsp_lapw script (unconstrained magnetic calc.)
 - runs lapw1/2 for both spins independently
 - case.scf contains extra information:
 - grep :MMT case.scf (for total moment)
 - grep :MMI case.scf (for atomic moments)
 - grep : HFF case.scf (for hyperfine fields)

Spin polarized calculations

- runsp_lapw script (unconstrained magnetic calc.)
 - runs lapw1/2 for both spins independently
 - case.scf contains extra information:
 - grep :MMT case.scf (for total moment)
 - grep :MMI case.scf (for atomic moments)
 - grep :HFF case.scf (for hyperfine fields)
- *runfsm_lapw -m value* (constrained moment calc.)
 - for difficult to converge magnetic cases or simply to constrain a moment (→ 2 Fermi-energies → external magnetic field)
- runafm_lapw (anti-ferromagnetic calculation)
 - calculates only spin-up, uses symmetry to generate spin-dn

Spin polarized calculations

- runsp_lapw script (unconstrained magnetic calc.)
- *runfsm_lapw -m value* (constrained moment calc.)
- *runafm_lapw* (anti-ferromagnetic calculation)
 - spin-orbit coupling can be included in second variational step
 - never mix polarized and non-polarized calculations in one case directory !!!

Non-collinear calculations

- in a case of non-collinear spin arrangements WienNCM (Wien2k clone) has to be used
 - code based on Wien2k (available for Wien2k users)
 - structure and usage philosophy similar to Wien2k
 - independent source tree, independent installation

Non-collinear calculations

- case of non-collinear spin arrangements WienNCM (Wien2k clone) has to be used
 - code based on Wien2k (available for Wien2k users)
 - structure and usage philosophy similar to Wien2k
 - independent source tree, independent installation
- WienNCM properties:
 - real and spin symmetry (simplifies SCF, less k-points)
 - constrained or unconstrained calculations (optimizes magnetic moments)
 - SOC in first variational step, LDA+U
 - spin spirals

WienNCM - implementation

• real and spin space parts of symmetry op. are bounded

symmetry treatment like SOC always on

- tool for setting up magnetic configuration

- concept of magnetic and non-magnetic atoms

NCM & SOC in Wien2k

m

wien2k workshop 2006 - p16

WienNCM implementation

•	sphere Hamiltonian: $\hat{H} = -\frac{\hbar}{2m}\nabla^2 + \hat{V} + \hat{H}_{so} + \hat{H}_{orb} + \hat{H}_c$
	AMA and full NC $\hat{V}_{FULL} = \begin{pmatrix} V_{\uparrow\uparrow} & V_{\downarrow\uparrow} \\ V_{\uparrow\downarrow} & V_{\downarrow\downarrow} \end{pmatrix}$ $\hat{V}_{AMA} = \begin{pmatrix} V_{\uparrow\uparrow} & 0 \\ 0 & V_{\downarrow\downarrow} \end{pmatrix}$
	SOC in first diagonalization $\hat{H}_{so} = \xi \vec{\sigma} \cdot \vec{l} = \xi \begin{pmatrix} \hat{l}_z & \hat{l}_x - i \hat{l}_y \\ \hat{l}_x + i \hat{l}_y & -\hat{l}_z \end{pmatrix}$
	diagonal orbital field $\hat{H}_{orb} = \sum_{mm'} \begin{pmatrix} m\rangle V_{mm'}^{\uparrow} \langle m' & 0\\ 0 & m\rangle V_{mm'}^{\downarrow} \langle m' \end{pmatrix}$
	constraining field $\hat{H}_c = \mu_B \vec{\sigma} \cdot \vec{B}_c = \begin{pmatrix} 0 & \mu_B (B_{cx} - iB_{cy}) \\ \mu_B (B_{cx} + iB_{cy}) & 0 \end{pmatrix}$

NCM & SOC in Wien2k

wien2k workshop 2006 - p17

WienNCM – spin spirals

L E N 2k

- transverse spin wave
 - $\alpha = \vec{R} \cdot \vec{q}$

 $\psi_{\vec{k}}(\vec{r}) = e^{i}$

- generalized Bloch theorem
 - generalized translations $T_n = \left\{ -\vec{q} \cdot \vec{R}_n | \epsilon | \vec{R}_n \right\}$
 - group of T_n is Abelian

$$T_n \psi_{\vec{k}}(\vec{r}) = U(-\vec{q} \cdot \vec{R}) \psi_{\vec{k}}(\vec{r} + \vec{R}) = \psi_{\vec{k}}(\vec{r})$$

 efficient way for calculation of spin waves, only one unit cell is necessary for even incommensurate wave

$$\vec{k}\cdot\vec{r}) \begin{pmatrix} e^{\frac{i\vec{q}\cdot\vec{r}}{2}} u^{\uparrow}(\vec{r}) \\ e^{\frac{-i\vec{q}\cdot\vec{r}}{2}} u^{\downarrow}(\vec{r}) \end{pmatrix}$$

. → →

WienNCM – case.inncm file

• case.inncm - magnetic structure file

NCM & SOC in Wien2k

SOC in Wien2k

SOC in Wien2k

Non-relativistic limit of Dirac equation

SOC mixes up and down states, j=l+s is good quantum number

		j=l+s/2		κ =-s(j+½)		occupation		Thorium T	
								6d _{3/2}	0.24 F
		s=-1	s=+1	s=-1	s=+1	s=-1	s=+1	7s	-0.32 F
S	0		1/2		-1		2	6p., -	— -1.55 F
р	1	1/2	3/2	1	-2	2	4	6p _{1/2} —	2-12 F
d	2	3/2	5/2	2	-3	4	6		
f	3	5/2	7/2	3	-4	6	8	6s —	3.33 F

Relativistic orbital contraction

- 1s contracts due to relativistic mass enhancement
- 2s 6s contract due to orthogonality to 1s

 $M = m/\sqrt{1 - (v/c)^2}$ v proportional Z: Gold: Z = 79;M = 1.2 m

NCM & SOC in Wien2k

SOC splitting of p states

- Spin Orbit splitting of I-quantum number.
- $p_{1/2}$ (κ =1): markedly different behavior than non-relativistic p-state
- $u_{\kappa=1}$: non-zero at nucleus

 Higher I-quantum number states expand due to better shielding of core charge from contracted s-states.

Au atomic spectra

NCM & SOC in Wien2k

SOC in magnetic systems

- SOC couples spin to the lattice (magneto- crystalline anisotropy)
 - direction of the exchange field matters (input in case.inso)
- symmetry operations acts in real and spin space
 - number of symmetry operations may be reduced
 - time inversion is not symmetry operation (no add inversion for k-list)
 - initso_lapw (symmetso) detects new symmetry setting

NCM & SOC in Wien2k

wien2k workshop 2006 - p26

SOC in Wien2k

- WIEN2k offers several levels of treating relativity:
 - non-relativistic: select NREL in case.struct (not recommended)
 - standard: fully-relativistic core, scalar-relativistic valence
 - mass-velocity and Darwin s-shift, no spin-orbit interaction
 - "fully"-relativistic:
 - adding SO in "second variation" (using previous eigenstates as basis)
 - adding p-1/2 LOs to increase accuracy (caution!!!)
 - Non-magnetic systems:
 - SO does NOT reduce symmetry. initso_lapw just generates case.inso and case.in2c.
 - Magnetic systems:
 - symmetso detects proper symmetry and rewrites case.struct/in*/clm*

SOC in Wien2k

- run(sp)_lapw -so script:
 - x lapw1 (increase E-max for more eigenvectors in second diag.)
 - x lapwso (second diagonalization)
 - x lapw2 -so -c (SO ALWAYS needs complex lapw2 version)
- case.inso file:

WFFIL

410						
-10.0000	1.50000					
0. 0. 1.						
1						
2 -0.97	0.005					
00000						

Ilmax,ipr,kpot emin,emax (output energy window) direction of magnetization (lattice vectors) number of atoms for which RLO is added atom number,e-lo,de (case.in1), repeat NX times number of atoms for which SO is switched off; atoms

Thank you for your attention