Magnetism and SOC in Wien2k

Robert Laskowski

rolask@theochem.tuwien.ac.ar
Vienna University of Technology, Institute of Materials Chemistry

SCOPE

- magnetism in Wien2k
- collinear spins (ferro, ferri, antiferro-magnets)
- non-collinear spin (any arrangements), introduction to WienNCM
- spin-orbit coupling (SOC) in Wien2k

Pauli Hamiltonian

$$
H_{P}=-\frac{\hbar}{2 \mathrm{~m}} \nabla^{2}+V_{e f}+\mu_{B} \vec{\sigma} \cdot \vec{B}_{e f}+\zeta(\vec{\sigma} \cdot \vec{l}) \ldots
$$

- 2×2 matrix in spin space, due to Pauli spin operators
- wave function is a 2-component vector (spinor)

Pauli Hamiltonian

$$
H_{P}=-\frac{\hbar}{2 \mathrm{~m}} \nabla^{2}+V_{e f}+\mu_{B} \vec{\sigma} \cdot \overrightarrow{B_{e f}}+\zeta(\vec{\sigma} \cdot \vec{l}) \ldots
$$

- exchange-correlation potential V_{xc} and magnetic field $B_{x c}$ are defined within DFT LDA or GGA

Exchange and correlation

- from DFT LDA exchange-correlation energy:

$$
E_{x c}(n, \vec{m})=\int n \epsilon_{x c}(n, \vec{m}) d r^{3} \quad \text { local function of } \mathrm{n} \text { and } \mathrm{m}
$$

- definition of V_{cx} and B_{xc} :

$$
V_{x c}=\frac{\partial E_{x c}(n, \vec{m})}{\partial n} \quad \vec{B}_{x c}=\frac{\partial E_{x c}(n, \vec{m})}{\partial \vec{m}} \quad \text { functional derivatives }
$$

- LDA expression for V_{cx} and $\mathrm{B}_{x \mathrm{c}}$:
$B_{x c}$ and m are parallel

$$
V_{x c}=\epsilon_{x c}(n, \vec{m})+n \frac{\partial \epsilon_{x c}(n, \vec{m})}{\partial n}
$$

Non-collinear case

$$
H_{P}=-\frac{\hbar}{2 \mathrm{~m}} \nabla^{2}+V_{e f}+\mu_{B} \vec{\sigma} \cdot \vec{B}_{e f}+\zeta(\vec{\sigma} \cdot \vec{l}) \ldots
$$

- direction of magnetization vary in space
- spin-orbit coupling is present

$$
\begin{aligned}
& \left(\begin{array}{cc}
-\frac{\hbar}{2 \mathrm{~m}} \nabla^{2}+V_{e f}+\mu_{B} B_{z}+\ldots & \mu_{B}\left(B_{x}-i B_{y}\right) \\
\mu_{B}\left(B_{x}+i B_{y}\right) & -\frac{\hbar}{2 \mathrm{~m}} \nabla^{2}+V_{e f}+\mu_{B} B_{z}+\ldots
\end{array}\right) \psi=\varepsilon \psi \\
& \psi=\binom{\psi_{1}}{\psi_{2}}, \quad \psi_{1,}, \psi_{2} \neq 0 \\
& \text { - solutions are non-pure spinors } \\
& \text { - non-collinear magnetic moments }
\end{aligned}
$$

Collinear case

$$
H_{P}=-\frac{\hbar}{2 \mathrm{~m}} \nabla^{2}+V_{e f}+\mu_{B} \vec{\sigma} \cdot \vec{B}_{e f}+\zeta \vec{\sigma}\langle\overrightarrow{\mathcal{L}} \ldots
$$

- magnetization in Z direction, B_{x} and $\mathrm{B}_{\mathrm{y}}=0$
- spin-orbit coupling is not present

$$
\left(\begin{array}{cc}
-\frac{\hbar}{2 \mathrm{~m}} \nabla^{2}+V_{e f}+\mu_{B} B_{z}+\ldots & 0 \\
0 & -\frac{\hbar}{2 \mathrm{~m}} \nabla^{2}+V_{e f}+\mu_{B} B_{z}+\ldots
\end{array}\right) \psi=\varepsilon \psi
$$

$\psi_{\uparrow}=\binom{\psi_{1}}{0}, \psi_{\downarrow}=\binom{0}{\psi_{2}}, \quad \varepsilon_{\uparrow} \neq \varepsilon_{\downarrow} \cdot \begin{aligned} & \text { solutions are pure spinors } \\ & \end{aligned} \quad$ collinear magnetic moments

Non-magnetic case

$$
\left.H_{P}=-\frac{\hbar}{2 \mathrm{~m}} \nabla^{2}+V_{e f}+\mu_{B} \overrightarrow{C \cdot \vec{B}_{e f}}+\vec{\zeta}+\vec{\sigma} \vec{Z}\right) \ldots
$$

- no magnetization present, $\mathrm{B}_{\mathrm{x}}, \mathrm{B}_{\mathrm{y}}$ and $\mathrm{B}_{\mathrm{z}}=0$
- spin-orbit coupling is not present

$$
\begin{gathered}
\left(\begin{array}{cc}
-\frac{\hbar}{2 m} \nabla^{2}+V_{e f}+\ldots & 0 \\
0 & -\frac{\hbar}{2 m} \nabla^{2}+V_{e f}+\ldots
\end{array}\right) \psi=\varepsilon \psi \\
\psi_{\uparrow}=\binom{\psi}{0}, \psi_{\downarrow}=\binom{0}{\psi}, \varepsilon_{\uparrow}=\varepsilon_{\downarrow} \\
\text { • solutions are pure spinors } \\
\\
\text { • degenerate spin solutions }
\end{gathered}
$$

Magnetism and Wien 2k

- Wien2k can only handle collinear or non-magnetic cases run_lapw script: DOS

```
x lapw0
x lapw1
x lapw2
x lcore
x mixer
```

non-magnetic case
$m=n_{\uparrow}-n_{\downarrow}=0$

Magnetism and Wien2k

- Wien2k can only handle collinear or non-magnetic cases

run_lapw script: DOS

$$
\begin{array}{lll}
\mathrm{x} & \text { lapw0 } \\
\mathrm{x} & \text { lapw1 } & \text {-up } \\
\mathrm{x} & \text { lapw1 } & \text {-dn } \\
\mathrm{x} & \text { lapw2 } & -\mathrm{up} \\
\mathrm{x} & \text { lapw2 } & \text {-dn } \\
\mathrm{x} & \text { lcore } & \text {-up } \\
\mathrm{x} & \text { lcore } & \text { dn } \\
\mathrm{x} & \text { mixer }
\end{array}
$$

magnetic case

$$
m=n_{\uparrow}-n_{\downarrow} \neq 0
$$

Spin polarized calculations

- runsp_lapw script (unconstrained magnetic calc.)
- runs lapw1/2 for both spins independently
- case.scf contains extra information:
- grep : MMT case.scf (for total moment)
- grep : MMI case.scf (for atomic moments)
- grep : HFF case.scf (for hyperfine fields)

Spin polarized calculations

- runsp_lapw script (unconstrained magnetic calc.)
- runs lapw1/2 for both spins independently
- case.scf contains extra information:
- grep :MMT case.scf (for total moment)
- grep :MMI case.scf (for atomic moments)
- grep : HFF case.scf (for hyperfine fields)
- runfsm_lapw -m value (constrained moment calc.)
- for difficult to converge magnetic cases or simply to constrain a moment $(\rightarrow 2$ Fermi-energies \rightarrow external magnetic field)
- runafm_lapw (anti-ferromagnetic calculation)
- calculates only spin-up, uses symmetry to generate spin-dn

Spin polarized calculations

- runsp_lapw script (unconstrained magnetic calc.)
- runfsm_lapw -m value (constrained moment calc.)
- runafm_lapw (anti-ferromagnetic calculation)
- spin-orbit coupling can be included in second variational step
- never mix polarized and non-polarized calculations in one case directory !!!

Non-collinear calculations

- in a case of non-collinear spin arrangements WienNCM (Wien2k clone) has to be used
- code based on Wien2k (available for Wien2k users)
- structure and usage philosophy similar to Wien2k
- independent source tree, independent installation

Non-collinear calculations

- case of non-collinear spin arrangements WienNCM (Wien2k clone) has to be used
- code based on Wien2k (available for Wien2k users)
- structure and usage philosophy similar to Wien2k
- independent source tree, independent installation
- WienNCM properties:
- real and spin symmetry (simplifies SCF, less k-points)
- constrained or unconstrained calculations (optimizes magnetic moments)
- SOC in first variational step, LDA+U
- spin spirals

WienNCM - implementation

- basis set - mixed spinors (Yamagami, PRB (2000); Kurtz PRB (2001) interstitials: $\varphi_{\vec{G} \sigma}=\mathrm{e}^{i|\vec{G}+\vec{k}| \cdot \vec{r}} \chi_{\sigma}$ spheres: $\quad \varphi_{\vec{G} \sigma}^{A P W}=\sum_{\sigma_{\alpha}} \sum_{l m}\left(A_{l m}^{\vec{G} \sigma \sigma_{\alpha}} u_{l}^{\sigma_{\alpha}}+B_{l m}^{\vec{G} \sigma \sigma_{\alpha}} \dot{u}_{l}^{\sigma_{\alpha}}\right) Y_{l m} \chi_{\sigma_{\alpha}}$

$$
\varphi_{\vec{G} \sigma_{\alpha}}^{A P W}=\left(A_{l m}^{\vec{G} \sigma \sigma_{\alpha}} u_{l}^{\sigma_{\alpha}}+B_{l m}^{\vec{G} \sigma \sigma_{\alpha}} u_{l}^{\sigma_{\alpha}}+C_{l m}^{\vec{G} \sigma \sigma_{\alpha}} u_{2, l}^{\sigma_{\alpha}}\right) Y_{l m} X_{\sigma_{\alpha}}
$$

- real and spin space parts of symmetry op. are bounded

- symmetry treatment like SOC always on
- tool for setting up magnetic configuration
- concept of magnetic and non-magnetic atoms

WienNCM implementation

- sphere Hamiltonian: $\hat{H}=-\frac{\hbar}{2 \mathrm{~m}} \nabla^{2}+\hat{V}+\hat{H}_{s o}+\hat{H}_{\text {orb }}+\hat{H}_{c}$ $\begin{array}{ll}\text { AMA and full NC } \\ \text { calculation }\end{array} \hat{V}_{\text {FULL }}=\left(\begin{array}{ll}V_{\uparrow \uparrow} & V_{\downarrow \uparrow} \\ V_{\uparrow \downarrow} & V_{\downarrow \downarrow}\end{array}\right) \quad \hat{V}_{\text {AMA }}=\left(\begin{array}{cc}V_{\uparrow \uparrow} & 0 \\ 0 & V_{\downarrow \downarrow}\end{array}\right)$

SOC in first diagonalization

$$
\hat{H}_{s o}=\xi \vec{\sigma} \cdot \vec{l}=\xi\left(\begin{array}{cc}
\hat{l}_{z} & \hat{l}_{x}-i \hat{l}_{y} \\
\hat{l}_{x}+i \hat{l}_{y} & -\hat{l}_{z}
\end{array}\right)
$$

diagonal orbital field

$$
\hat{H}_{\text {orb }}=\sum_{m m^{\prime}}\left(\begin{array}{cc}
|m\rangle V_{m m^{\prime}}^{\uparrow}\left\langle m^{\prime}\right| & 0 \\
0 & |m\rangle V_{m m^{\prime}}^{\iota}\left\langle m^{\prime}\right|
\end{array}\right)
$$

constraining field

$$
\hat{H}_{c}=\mu_{B} \overrightarrow{\vec{\sigma}} \cdot \vec{B}_{c}=\left(\begin{array}{cc}
0 & \mu_{B}\left(B_{c x}-i B_{c y}\right) \\
\mu_{B}\left(B_{c x}+i B_{c y}\right) & 0
\end{array}\right)
$$

WienNCM - spin spirals

- transverse spin wave

$$
\alpha=\vec{R} \cdot \vec{q}
$$

- generalized Bloch theorem
- generalized translations $T_{n}=\left\{-\vec{q} \cdot \vec{R}_{n}|\epsilon| \vec{R}_{n}\right\}$
- group of T_{n} is Abelian

$$
\begin{aligned}
& T_{n} \psi_{\vec{k}}(\vec{r})=U(-\vec{q} \cdot \vec{R}) \psi_{\vec{k}}(\vec{r}+\vec{R})=\psi_{\vec{k}}(\vec{r}) \\
& \text { - efficient way for calculation of spin } \\
& \psi_{\vec{k}}(\vec{r})=\mathrm{e}^{i(\vec{k} \cdot \vec{r}}\left(\begin{array}{c}
\frac{i \vec{q} \cdot \vec{r}}{2} \\
\mathrm{e}^{\top}(\vec{r}) \\
\mathrm{e}^{\frac{-i \vec{q} \cdot \vec{r}}{2}} u^{\downarrow}(\vec{r})
\end{array}\right) .
\end{aligned}
$$ waves, only one unit cell is necessary for even incommensurate wave

WienNCM - case.inncm file

- case.inncm - magnetic structure file

SOC in Wien2k

SOC in Wien2k

- Non-relativistic limit of Dirac equation

$$
[\underbrace{\frac{p^{2}}{2 m}+V}_{\substack{\text { Schrödinger } \\ \text { Equation }}}-\underbrace{+\underbrace{}_{\text {spin-orbit corm }} \frac{1}{2 m^{2} c^{2} r} \frac{1}{r} \frac{d V}{d r}(\vec{l} \vec{s})}_{\substack{\text { mass enhancement }+8 m^{3} c^{2}} \frac{\hbar^{2}}{4 m^{2} c^{2}} \frac{d V}{d r} \frac{\partial}{\partial \vec{r}}}] \Phi=\varepsilon \Phi
$$

- SOC mixes up and down states, $j=/+s$ is good quantum number

		$j=1+s / 2$		$\kappa=-s(j+1 / 2)$		occupation	
	l	$s=-1$	$s=+1$	$s=-1$	$s=+1$	$s=-1$	$s=+1$
s	0		$1 / 2$		-1		2
p	1	$1 / 2$	$3 / 2$	1	-2	2	4
d	2	$3 / 2$	$5 / 2$	2	-3	4	6
f	3	$5 / 2$	$7 / 2$	3	-4	6	8

Thorium	
$6 \mathrm{~d}_{3 / 2}$	-0.24 Ry
7 s	-0.32 Ry
$6 p_{3 / 2}$	-1.55 Ry
$6 \mathrm{p}_{1 / 2}$	-2-12 Ry
65	_-3.33 Ry

Relativistic orbital contraction

- Au s orbitals (no SOC)

- 1s contracts due to relativistic mass enhancement
- $2 s-6 s$ contract due to orthogonality to 1 s

$$
M=m / \sqrt{1-(v / c)^{2}} \quad v \text { proportional Z: Gold: } \mathrm{Z}=79 ; \mathrm{M}=1.2 \mathrm{~m}
$$

SOC splitting of p states

- Spin Orbit splitting of I-quantum number.
- $\mathrm{p}_{1 / 2}(\kappa=1)$: markedly different behavior than non-relativistic p-state
- $\mathrm{u}_{\mathrm{k}=1}$: non-zero at nucleus

Relativistic orbital expansion

- Higher l-quantum number states expand due to better shielding of core charge from contracted s-states.

Au atomic spectra

SOC in magnetic systems

- SOC couples spin to the lattice (magneto- crystalline anisotropy)
- direction of the exchange field matters (input in case.inso)
- symmetry operations acts in real and spin space
- number of symmetry operations may be reduced
- time inversion is not symmetry operation (no add inversion for k-list)
- initso_lapw (symmetso) detects new symmetry setting
direction of magnetization

	$[100]$	$[010]$	$[001]$	$[110]$
1	A	A	A	A
m_{a}	A	B	B	-
m_{b}	B	A	B	-
2_{z}	B	B	A	B

SOC in Wien2k

- WIEN2k offers several levels of treating relativity:
- non-relativistic: select NREL in case.struct (not recommended)
- standard: fully-relativistic core, scalar-relativistic valence
- mass-velocity and Darwin s-shift, no spin-orbit interaction
- "fully"-relativistic:
- adding SO in "second variation" (using previous eigenstates as basis)
- adding p-1/2 LOs to increase accuracy (caution!!!)
- Non-magnetic systems:
- SO does NOT reduce symmetry. initso_lapw just generates case.inso and case.in2c.
- Magnetic systems:
- symmetso detects proper symmetry and rewrites case.struct/in*/clm*

SOC in Wien2k

- run(sp)_lapw -so script:

x	lapw1
x	lapwso
x	lapw2 -so -c
-	(second diagonalization)
(SO ALWAYS needs complex lapw2 version)	

- case.inso file:

WFFIL
410
-10.0000 1.50000
0. 0.1 .

1
$\begin{array}{lll}2 & -0.97 & 0.005\end{array}$
00000
Ilmax,ipr,kpot
emin,emax (output energy window)
direction of magnetization (lattice vectors)
number of atoms for which RLO is added atom number,e-lo,de (case.in1), repeat NX times number of atoms for which SO is switched off; atoms

Thank you for your attention

